Algebraic Expressions

Q1. Write the algebraic expression for each of the following statements using variables and constants.

- a. Product of six and the successor of a number x:
- b. Product of two numbers a and b added to their sum:
- c. A number p multiplied by itself 5 times:
- d. Sum of the squares of two numbers p and q:

Q2. Fill in the blanks by choosing the correct option:

- a. The co-efficient of x^2y^5 in the term $-x^4y^5$ is _____.
 - $a. x^2$
- b. -x²
- b. 2xy and $\frac{1}{5}xy$ are _____ terms.
 - a. like
- b. unlike
- c. $-12a^4b^3$ and _____ are like terms.
 - a. $-12p^4q^3$
- b. 6a4b3
- d. The degree of the polynomial $2x^2y^3 + x^3 + 2xyz$ is _____.
 - a. 5

b. 3

Q3. Write the correct degree of the following polynomials:

Polynomial	Degree
$2x^3y^3 + 3xyz - 6y^4$	
$-5p^4q^5 + 2p^2q^3r$	
10abc	
$-7xyz^2$	

Q4. What should be added to $7p^2q^3 - 2pq^2$ to get $-3p^2q^3 + pq^2 - pq$?

Q5. Two polynomials A and B are such that:

$$A - 2B = 4x^2y^3 + 2xy$$

If $B = 5xy - 7x^2y^3$, find A.

Answer: A =

Q6. The length and breadth of a rectangle is $(2x^2y^4 + 3x^2y^2)$ and $(5x^2y^4 - 2x^2y^2)$. Find the perimeter of the rectangle if x = 2 and y = -1.

Answer: Perimeter = _____

Q7. If A = 7x + 9y, B = 8x - 4y, find (2A - B) - (A + 2B).

Answer:

Q8. Find the numbers and fill in the blanks:

a. Use any four prime numbers to get the sum 35.

____ +___ + ___ = 35

b. Use any three prime numbers to get the sum 32.

_____ + ____ + ____ = 32

Q9. If x = 5, y = 3 and z = -8, evaluate the following and match the correct answers:

$x^2 + y^2 + z^2$	91
$2x^3 - 3y - 8z$	331
$3x + 4x^2y - 2z$	305
-2z + 5xy	98

Q10. Simplify:

a.
$$7x + 3y - \{2x - 3y - 2(x + y)\}$$

b.
$$p^2 - [3q^2 - \{2p^2 - q^2 - q^2 - 2p^2\}]$$

Answers

1. a. 6(x + 1); b. ab + (a + b); c. p^5 ; d. $p^2 + q^2$

2. a. $-x^2$; b. like; c. $6a^4b^3$; d. 5

3.

Polynomial	Degree
$2x^3y^3 + 3xyz - 6y^4$	6
$-5p^4q^5 + 2p^2q^3r$	9
10abc	3
$-7xyz^2$	4

4. $-10p^2q^3 + 3pq^2 - pq$

5. $-10x^2y^3 + 12xy$

6. 64 units

7. -17x + 21y

8. a. 2 + 3 + 13 + 17; b. 13 + 17 + 2

9.

$x^2 + y^2 + z^2$	98
$2x^3 - 3y - 8z$	305
$3x + 4x^2y - 2z$	331
-2z + 5xy	91

10. a. 7x + 8y; b. $5(p^2 - q^2)$